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ABSTRACT

This report summarizes the progress made by Teledyne Brown

Engineering under Contract No. NAS8-26557. Included are descriptions

of the following tasks which were accomplished:

* Performed ANISN calculations of the radiation environ-
ment caused by a Bremsstrahlung photon source in a
slab of aluminum

· Developed advanced techniques in Monte Carlo radiation
transport calculations

e Conducted an advanced shielding class for Space
Sciences Laboratory personnel to discuss theory
and numerical methods for determining nuclear
radiation environments

* Performed analysis of the gamma and neutron fluxes
caused by cosmic-ray gamma and neutron spectra
incident on a gamma-ray telescope experiment package

* Computed neutron flux and dose in a semi-infinite slab
of hydrogen in water for deep penetration (100 mean
free paths).
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1. INTRODUCTION

Under Contract No. NAS8-26557, Teledyne Brown Engineering

was requested by the George C. Marshall Space Flight Center (MSFC)

to perform a study program of radiation shielding against the deleterious

effects of nuclear radiation on man and equipment. Fluxes and doses

were calculated to check out the application of the shielding programs on

the MSFC computer facility for the typical nuclear rocket shield con-

figurations and other related space apparatus. This report summarizes

the efforts to satisfy this technical directive.

Section 2 discusses the methods used to analyze the radiation

environment from Brenmsstrahlung photons.

Section 3 details the various methods employed by transport

code users. The state-of-the-art capabilities and the prospective future

developments are discussed.

Section 4 outlines the steps taken during the advanced class on

radiation shielding techniques. During this seminar-workshop, the

theory and numerical methods used to solve transport of neutrons and

gammas were discussed.

Sections 5 and 6 describe the analyses of special problems. The

cosmic- ray gamma and neutron fluxes that would be present on the gamma-

ray telescope experiment were analyzed. In addition, neutron fluxes

and doses were calculated, using a slab of hydrogen in water that was

subjected to 8. 1-MeV monodirectional neutrons for deep penetration

up to 100 mean free paths in the hydrogen slab. These calculations

were solved through use of the discrete ordinate SN.
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2. ANALYSIS OF THE RADIATION ENVIRONMENT
CAUSED BY BREMSSTRAHLUNG PHOTONS IN A

SLAB OF ALUMINUM

The Space Sciences Laboratory has been determining the Brems-

strahlung photon flux in thin materials by means of a kernel technique.

Teledyne Brown Engineering personnel were requested to substantiate

the kernel method by comparing the results to a transport calculation.

The transport program selected was a discrete ordinates SN program,

ANISN (Ref. 2-1).

A distributed photon source spectrum as a function of energy,

angle, and depth in an aluminum slab was provided by Space Sciences

Laboratory. The source term data were manipulated into an accept-

able format to be used in ANISN as a distributed source. A 1.85-

centimeter slab of aluminum was subdivided into 42 mesh intervals,

as indicated in Table 2-1. The 25-photon energy group structure with

P 3 order of scattering for aluminum cross section data, as indicated

in Table 2-2, was obtained from the GAMLEG-W's (Ref. 2-2) 99 fine

group library at MSFC's UNIVAC-1108 tape library. ANISN was executed

on the MSFC UNIVAC-1108 computer facility using an S16 order of

angular quadrature set.

The Bremsstrahlung photon flux calculations from ANISN were

forwarded to Space Sciences Laboratory personnel for comparison.
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TABLE 2-1. MESH SPACING USED IN ALUMINUM SLAB FOR
BREMSSTRAHLUNG PROBLEM, 0.0- TO 1.85-cm

MESH SPACING (cm)

0.0
3.704-3*
4.7985-3
6.216-3
8.054-3
1.043-2
1.352-2
1.751-2
2.269-2
2.940-2
3.808-2
4.934-2
6.392-2
8.282-2
1.073-1
1.390-1
1.801-1
2.333-1
3.023-1
3.469-1
3.916-1
4.495-1
5.074-1
5.823-1
6.573-1
7.721-1
7.868-1
8.546-1
9.145-1
9.774-1
1.040+0
1.103+0
1.168+0
1.234+0
1.299+0
1.364+0
1.500+0
1.570+0
1.641+0
1.711+0
1.781+0
1.852+0

*Read as 3.704 x 10- 3
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TABLE 2-2. PHOTON ENERGY GROUP STRUCTURE FOR
BREMSSTRAHLUNG PROBLEM

ENERGY INTERVAL (MeV)

UPPER LOWER

7.0

6.0

4.7

3.5

2.7

1.5

1.2

0.9

0.65

0.50

0.40

0.30

0.23

0.175

0.130

0.100

0.0750

0.060

0.045

0.035

0.025

0.020

0.015

0.012

6.0

4.7

3.5

2.7

1.5

1.2

0.9

0.65

0.50'

0.40

0.30

0.23

0.175

0.130

0.100

0.0750

0.060

0.045

0.035

0.025

0.020

0.015

0.012

0.010
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3. ADVANCED TECHNIQUES IN MONTE CARLO RADIATION
TRANSPORT CALCULATIONS

Detailed studies were made of the dissertation, "Coupled Sampling

with the Monte Carlo Method in Neutron Transport Calculations" by

L. L. Carter, University of Washington (Ref. 3-1). Dr. Carter used a

forward Monte Carlo calculation to determine the importance function

for sampling from the adjoint equation to estimate some effect of

interest, e.g., dose rate.

A continuing study of advanced techniques in Monte Carlo radia-

tion transport calculations included the MORSE multigroup Monte Carlo

code (Ref. 3-2). The MORSE code exhibits several advanced techniques

that are not generally available in other Monte Carlo codes. These

include simultaneous handling of neutrons, gammas, and secondary

gammas by using coupled neutron-gamma cross section data and the

option of solving either the forward or adjoint problem.

A recent development in the importance sampling, used by Calvin

Burgart (Ref. 3-3) at Oak Ridge National Laboratory, was reviewed.

Mr. Burgart used the adjoint flux from ANISN calculations as an impor-

tance function in forward Monte Carlo. Of particular interest was the

selection of the direction of scattering from the altered collision kernel.

Burgart's approach was to introduce an angular grid fixed in the lab

system, along which particles are required to travel. This approach

seems to solve the difficulties that are inherent in sampling from the

collision kernel which is specified relative to the incoming particle

direction.
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4. ADVANCED SHIELDING CLASS FOR SPACE
SCIENCES LABORATORY PERSONNEL

An extensive seminar-workshop series was performed by Teledyne

Brown Engineering for personnel of the Nuclear and Plasma Physics

Division at Space Sciences Laboratory. The combination lecture and

workshop was divided into the two sections listed below.

e Discussion of the development of the Boltzmann
transport equation and the pertinent parameters
needed by the various nuclear shielding methods

· Numerical solutions to the Boltzmann transport
equations:

A Point Kernel Techniques using the KAP-VI com-
puter program

A Discrete Ordinates SN techniques using the DOT-IIW
computer program

A Monte Carlo Techniques using the CAVEAT com-
puter program.

4. 1 DEVELOPMENT OF BOLTZMANN TRANSPORT EQUATION

The development of the Boltzmann transport equation was derived

from the physical phenomonology of a particle balance. The technique

of reducing the Boltzmann transport equation to a form amenable to

solution was demonstrated by the use of the spherical harmonics, and

the P1 approximation to give the transport corrected diffusion equation.

Also included in the presentation was an explanation concerning the

mathematical and physical concepts of quantities such as particle den-

sity, flux, fluence, and current that are used to describe radiation fields.
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4.2 NUMERICAL SOLUTION TO BOLTZMANN TRANSPORT

EQUATION

The numerical methods for solution of the transport equation

discussed by Teledyne Brown Engineering were the Point Kernel

KAP-VI (Ref. 4-1), Discrete Ordinate DOT-IIW (Ref. 4-2), and Monte

Carlo CAVEAT Programs (Ref. 4-3).

For all three numerical methods, a general geometric model

of the nuclear rocket reactor and attached propellant tank configura-

tion was used. The model is shown in Figures 4-1 and 4-2.

4. 2. 1 Discussion of Seminar-Workshop on the Use of KAP-VI

The development, use, accuracy, and limitations of the Point

Kernel calculation techniques were discussed during the presentation

of the theory. KAP-VI as a point kernel transport code involves the

representation of a source by a number of point isotropic sources and

computes the attenuation along a ray through all geometric regions

traversed by the line-of-sight method to the receiver point.

Following the general treatment of the KAP-VI theory, an

extensive study was made of the KAP-VI input data. During the work-

shop phase of the course, emphasis was given to a detailed explanation

of each piece of KAP-VI input data necessary to compute the radiation

environment. This explanation gave the reasons why the particular

data was used and identified the source of data to be used in solving

other KAP-VI problems.

KAP-VI data can be categorized in the following areas:

e Neutron and gamma source radial and axial mesh dis-

tributions. A distribution for workshop problems is
shown in Figures 4-3 and 4-4.

4-2



200.66

198.12

175.26

E
u

L)J

.J,

z

-.I-4

x

160.02

139.7

137.16

NOTE: CIRCLED
NUMBERS REFER
TO COMPOSI-
TION NUMBERS
AS GIVEN IN
TABLE 4-1.

0.0

I

O PLENUM

Q SUPPORT
PLATE

I

O SHIELD

47 PLENUM
I I~~~~~~~

0

0.0

CORE

;a
mI-rl

ro
-I0-
0n

50.8 63.5 66.04

RADIAL DISTANCE (cm)

FIGURE 4-1. BASIC REACTOR GEOMETRY FOR THE SAMPLE PROBLEM

4-3

I',

U)
()

m

r-

0®



-PROPELLANT
WALL

z

R

NOTE: CIRCLED NUMBERS REFER
TO BOUNDARY LAYERS.
OTHER NUMBERS REFER
TO REGION NUMBERS.

DIMENSIONS ARE IN
CENTIMETERS.

FIGURE 4-2. GEOMETRICAL MODEL FOR THE REACTOR AND PROPELLANT
TANK CONFIGURATION

4-4

18

REACTOR
REGION



C
in"

O

o~~

C>

LUw

o LU

E
u

LU 

c O

to
(NJ C'

o

CUO ~~~C

o L

o 0

C)

o

o o U

I -

o I-

LL . I

o 0

Zo

~u

I.-

co i o

(Z) OC L cc
I'D

* 0•

NJ: I-

o L Cd

LL J

-i

C)C c
< -o
C ) I

CKW

o LU

-1 
oC 

cr,
o 

LU

N O CO u3 N O~~C C ~ C ~ C= C

(Z)J 'WiinuiblSIO 3AIIV]33~

4-5



10 20 30 40 50 60

RADIUS (cm)

FIGURE 4-4. RELATIVE RADIAL DISTRIBUTION OF THE SOURCE
IN THE REACTOR CORE - REGION 1

4-6

2.0

1.8

o

4--

I-

C,co

-r

F--4

Cl

c1

Lii

-
Lu

1.6

1.4

1.2

1.0

0.8
0



· Geometry of a system as a group of zones and boundary
surfaces

· Material composition matrix. A matrix used in the work-
shop is shown in Table 4-1.

· Neutron and gamma energy or particle spectra data

o Energy group dependent response data to convert
particle flux or energy flux to dose and/or heating
rates

· Fast neutron removal cross section data

· Gamma mass absorption attenuation coefficients

· Gamma buildup coefficient data

· Neutron bivariant or monovariant spectra polynomial
data.

During the workshop an explanation of the KAP-VI data entries

and the source of the data in the available reference material was given.

The input data instructions were placed on computer data forms by the

participants during the workshop sessions. Several KAP-VI data decks

for the nuclear rocket reactor model were submitted for execution on

the MSFC UNIVAC 1108 computer. The KAP-VI nuclear rocket neutron

and gamma output at selected points was discussed. Continuing effort

and periodic technical assistance with Space Sciences Laboratory per-

sonnel have been directed for similar KAP-VI problems associated with

NASA efforts. Recently, effort was focused on a SNAP power generator

model for a neutron and gamma analysis using KAP-VI.

4.2.2 Discussion of Seminar-Workshop on the use of DOT-IIW

Several lecture sessions were devoted to the theory of the dis-

crete ordinates solution to the Boltzmann transport equation and in the

instructions in the practical use of a discrete ordinates SN program.
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The two-dimensional, time-independent, discrete ordinates pro-

gram, DOT-IIW, was used to determine the neutron flux and/or dose for

the nuclear reactor assembly. The neutron flux and dose were deter-

mined for the R-Z geometry described in Figure 4-1. A neutron dis-

tributed source in the R and Z mesh intervals of the reactor core region

was established in accordance with data obtained from Figures 4-3 and

4-4.

The neutron cross section for the elements in the reactor region

were assembled from a Westinghouse elemental cross section library.

The cross section set considers an energy group structure with 16 energy

intervals as tabulated in Table 4-2, and with P0 order of scatter for

the elements, as listed in Table 4-2. An Sz quadrature set was used in

the solution, employing a mesh spacing of 32 radial and 36 axial inter-

vals for the complete system description.

In the workshop session, a step-by-step explanation of each data

entry was given. Interpretations of the results from DOT-IIW were dis-

cussed with the members attending the seminar-workshop.

4. 2. 3 Discussion of Seminar-Workshop on the use of CAVEAT

The Monte Carlo program CAVEAT was used to determine the

gamma fluxes and doses for the nuclear rocket reactor geometry model,

as shown in Figure 4-1. The gamma source distribution in the reactor

core region was subdivided into intervals on the R and Z axis, based on

data obtained from Figures 4-3 and 4-4.

The gamma point cross section data were obtained from data

tabulated by Storm and Israel (Ref. 4-4) for elements shown in Table 4-1.

In the workshop session, each data entry was thoroughly explained.

An analysis of the dose and flux results from CAVEAT was discussed by

the members attending the seminar-workshop.
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TABLE 4-2. DOT-IIW NEUTRON ENERGY GROUP STRUCTURE AND ELEMENT
LIST FOR NUCLEAR ROCKET SEMINAR-WORKSHOP

4-10

ELEMENT GROUP J ENERGY INTERVAL BOUNDS (eV) ELEMENT LIST

1 2.87 x 106 to 1.0 x 107

2 1.35 x 106 to 2.87 x 106 H

3 8.21 x 105 to 1.35 x 106 Be

4 3.88 x 105 to 8.21 x 105 B

5 1.11 x 105 to 3.88 x 105 C

6 1.50 x 104 to 1.11 x 105 Al

7 5.53 x 103 to 1.50 x 104 Cr

8 5.83 x 102 to 5.53 x 103 Fe

9 7.89 x 101 to 5.83 x 102 Ni

10 1.07 x 101 to 7.89 x 101 Nb

11 1.86 x 100 to 1.07 x 101 U-235

12 3.0 x 10- 1 to 1.86 x 100 U-238

13 1.2 x 10-1 to 3.0 x 10-'1

14 6.0 x 10-2 to 1.2 x 10- 1

15 2.0 x 10-2 to 6.0 x 10- 2

16 0.0 to 2.0 x 10- 2
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5. GAMMA-RAY TELESCOPE RADIATION ENVIRONMENT

Calculations were made of the neutron and gamma-ray flux

in the NaI detector of the gamma-ray telescope caused by the cosmic-

ray neutron and gamma spectrum expected to be incident on the telescope

assembly when in operation. The two-dimensional discrete ordinates

code, DOT (Ref. 4-2), was used to perform the calculations. The dis-

crete ordinates methods of solving the transport equation is based on

the iterative solution of the transport equation written in finite difference

form. Neutron and gamma-ray cross sections were represented in

multigroup form and treated anisotropic scattering with a P1 order

of Legendre expansion; an S8 order of angular quadrature was used,

which means that 48 spatial angles were considered in calculating the

angular and scalar flux at each point.

A boundary source condition was applied to all sides of the tele-

scope assembly to represent the neutron and gamma flux which would be

experienced in actual operation. The flux was assumed to be isotropic,

the actual values of flux that were used in the calculation are shown in

Figures 5-1, 5-2, and 5-3. A check with the boundary replaced by a

void, i. e., there was no material present in the calculation, repro-

duced the incident fluxes (Figures 5-1, 5-2, and 5-3) at all locations

within the void region. This apparent trivial calculation is quite

important, in that any of the most commonly made errors in setting up

a problem of this type are made obvious as a result.

The actual geometry of the experiment package is shown in

Figure 5-4. As recommended, the photomultiplier tubes and the 3/8-

inch thick aluminum base plate were not considered in the calculation.

Using the R-Z geometry option in DOT, a mockup of the telescope
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assembly was made, as shown in Figure 5-5. Note that surfaces and

zone boundaries used in DOT must be either constant z radial planes,

or cylindrical surfaces of constant radius from the center line (there-

fore conical regions), such as the boron liner on the inner wall of the

mineral oil container which must be represented by a series of concen-

tric cylindrical annuli. There is a commonly used method of mocking

up conical regions with cylindrical geometry which is quite reliable, pro-

vided the total amount of material is the same in both cases and provided

there are not significant "windows" remaining in the material where

streaming of radiation could occur. Care was taken in meeting both of

these conditions. A similar representation was made of the region

which contains the NaI scraps in mineral oil.

A 47-group energy structure was used for the calculation, com-

prised of 27 neutron energy groups and 20 gamma groups; Table 5-1

lists the upper boundaries of these groups. Microscopic cross sections

were obtained from the Oak Ridge National Laboratory in this 47-group

structure, for all elements that were present in the geometry. The

microscopic cross sections were multiplied by the elemental number

densities to obtain a set of macroscopic cross sections for each region

in the problem. Normally, microscopic cross sections are input into

DOT along with the number densities for each element in a material,

and the code then calculates its own macroscopic cross sections. How-

ever, in this case, the cross section "mixing" was done with a separate

code before running DOT to make more computer core storage locations

available for the transport calculation. In this case, there was still a

severe limitation on the problem size using MSFC's UNIVAC 1108 sys-

tem, and the calculation, as described, was the most detailed representa-

tion of the actual problem that could be run. Because of the method of
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TABLE 5-1. UPPER BOUNDARIES OF A 47-GROUP ENERGY STRUCTURE

NEUTRON PHOTON

GROUP UPPER ENERGY BOUNDS (eV) GROUP I UPPER ENERGY BOUNDS (eV)
,=

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

1.49

1.22

1.00

8.19

6.70

5.49

4.49

3.67

3.01

2.47

2.02

1.65

1.35

1.10

9.07

6.08

4.08

1.11

1.50

3.35

5.83

1.01

2.90

1.07

3.06

1.13

4.14

2.50

(+7)*

(+7)

(+7)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+5)

(+5)

(+5)

(+5)

(+4)

(+3)

(+2)

(+2)

(+1)

(+1)

(+0)

(+0)

(-1) -

(-2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1.0

8.0

7.0

6.0

5.0

4.0

3.5

3.0

2.5

2.0

1.6

1.2

9.0

6.0

4.0

3.0

2.1

1.6

1.2

7.0

1.0

(+7)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+6)

(+5)

(+5)

(+5)

(+5)

(+5)

(+5)

(+5)

(+4) -

(+4)

*Read as 1.49 x 107
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solution in discrete ordinate programs, it is not possible to have a

boundary source incident on all sides of the geometry at once, there-

fore the calculation was made twice, once with the source on the top

and sides, and secondly with the source on the bottom. To determine

the total flux, the results of these calculations were then added. The

fluxes were calculated at 12 points within the NaI crystal. A linear

average of the four points on the center plane of the crystal was made

and that is the value shown in the results.

The final results are listed in Table 5-2, and are shown in

Figures 5-6 through 5-9, as differential number flux (neutrons or

gammas/cm -sec-energy group width). As mentioned previously,

this is the flux at the center of the NaI detector. But, if there are any

other locations at which the flux is desired, they are presently avail-

able in a similar manner, since the discrete ordinates method of solu-

tion provides results at all mesh points in the geometry (there were

380 mesh points in this problem) for each calculation.
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TABLE 5-2. DIFFERENTIAL NUMBER FLUX USING A 47-GROUP ENERGY STRUCTURE

NEUTRON PHOTON

DIFFERENTIAL NUMBER FLUX DIFFERENTIAL NUMBER FLUX
GROUP (neutrons/cm2-sec-MeV) GROUP (photons/cm2-sec-MeV)

I 11 i~~~~~~~~~~~~~~~~~~~

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

3.92

5.19

6.56

8.76

1.14

1.49

1.87

2.64

3.21

4.43

5.98

7.88

1.03

1.35

1.92

3.25

4.65

9.24

2.98

1.46

6.77

1.92

7.25

1.73

3.20

5.38

6.84

(-3)*

(-3)

(-3)

(-3)

(-2)

(-2)

(-2)

(-2)

(-2)

(-2)

(-2)

(-2)

(-1)

(-1.)
(-1)

(-1)

(-1)

(-1)

(0)

(+1)

(+ )

(+2)

(+2)

(+3)

(+3)

(+3)

(+4)

1

2

3

4

5

6

7

8

9

10

11

1

13

14

15

16

17

18

19

20

4.09

5.62

2.44

2.70

8.76

9.52

1.02

1.94

2.22

1.43

1.79

2.41

3.63

1.28

9.40

8.34

5.72

2.02

2.72

8.23

(-3)

(-3)

(-2)

(-2)

(-2)

(-2)

(-1)

(-1)

(-1 )

(-1)

(-1)

(-1 )
(-1)

(0).

(-1)

(-1)

(-1)

(-1)

(-2)

(-2)

*Read as 3.92 x 10- 3
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6. NEUTRON PENETRATION THROUGH A SLAB OF
HYDROGEN USING DISCRETE ORDINATES TECHNIQUES

In previous analyses of neutron penetration through thick hydro-

gen slabs, Monte Carlo techniques employing importance sampling

methods (Ref. 6-1) have been used to improve accuracy. In deep pene-

tration the Monte Carlo process requires both a considerable amount

of computer time and insight relative to choosing the proper importance

function for the sampling schemes. As a comparison on computer time

and accuracy of results, the discrete ordinate program ANISN (Ref. 6-2)

was employed to calculate the neutron flux, single collision doses, and

multicollision doses through semi-infinite slabs of hydrogen. These

calculations can be. used to determine the fast dose buildup factors at

values up to 100 mean free paths.

6. 1 MODELS AND METHODS USED IN TRANSPORTING
NEUTRONS IN HYDROGEN

To determine the neutron flux and doses from a beam of 8.1-

MeV neutrons that is normally incident on a semi-infinite slab of hydro-

gen in water, the one-dimensional ANISN discrete ordinate SN program

was used. The model that was used to simulate the conditions consisted

of a semi-infinite slab of hydrogen having a density of 0. 111 g/cm3 ,

which corresponds to the hydrogen density in water. A diagram of the

geometric mesh spacing employed in ANISN is given in Figure 6-1.

The one-dimensional slab geometry was used with vacuum interfaces

on the left and right boundaries. The mesh spacing was selected with

a fine mesh near the boundaries and a course mesh in the center. The

course mesh spacing was varied from approximately 0. 125 to 1.0 mean

free path for a neutron energy group of 7 to 8 MeV. Evaluation of flux

and dose was not allowed near the vacuum boundaries, since end effects
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in ANISN would distort the results. Location of the source was in the

first mesh cell, as shown in Figure 6-2. The first mesh cell has an

overall dimension of less than 1 centimeter.

SEMI-INFINITE SLAB OF HYDROGEN

FIGURE 6-1. MESH SPACING FOR A SLAB OF HYDROGEN IN
WATER, USING ANISN

LEFT VACUUM
BOUNDARY

MESH CELL
NUMBER 1 GAMMA

NORMAL

INITIAL COSINE SOURCE
DIRECTION

S8 ORDER OF ANGULAR
QUADRATURE, yl=0.9512

S1 6 ORDER OF ANGULAR
QUADRATURE y¥=0.9805

FIGURE 6-2. SOURCE REGION DESCRIPTION

6-2
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In ANISN, the shell source method was used. This method

places the source on the right boundary surface of the first mesh cell.

The energy group structure that was used is shown in Table 6-1. The P3

hydrogen-neutron cross section data corresponding to this energy group

structure were obtained from the Radiation Shielding Information Center

(Ref. 6-3). Representation of the 8. l-MeV monoenergetic source

neutrons, as stated in the paper by M. H. Kalos (Ref. 6-1), cannot

be easily accomplished with the above energy group cross-section set.

To best simulate an 8. 1-MeV neutron source, the neutrons were

selected from energy group 4 (8. 18 to 6.70 MeV). When the total cross

section of this energy group was considered, the mean source neutron

energy for the group was 7.3 MeV. The direction of the source neutrons

had to be normally incident to the surface of the slab. Because of the

discrete angular quadrature sets in ANISN, an approximation in the source

initiated incident direction for a neutron source particle was made.

Discrete cosine values of 0. 9512 and 0.9805 were used in the S8 and

S1 6 calculations, respectively, which best simulate a monodirection

neutron source normally incident to the slab of hydrogen.

Flux-to-dose conversion factors by energy group are listed in

Table 6-1 for the single-collision neutron dose (rad/n- cm 2 ) and multiple-

collision neutron dose (rad/n. cm 2 )

6.2 RESULTS

The calculated ANISN fluxes and doses are tabulated in Table

6-2 for the slab of hydrogen from 5 to 100 mean free paths. Included

in the table are the neutron fluxes (n/cm2 -sec) for both S8 and S1 6 order

of angular quadrature data and mesh spacing of approximately 0. 125 to

1.0 mean free paths for various depths in the hydrogen slab. One mean

free path of hydrogen in water is 12. 5 centimeters for the energy inter-

val of 8. 18 to 6. 70 MeV with an average energy of 7.3 MeV.
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TABLE 6-1. NEUTRON ENERGY GROUP STRUCTURE FOR
HYDROGEN IN H20 PROBLEM

NEUTRON SINGLE-COLLISION MULTIPLE-COLLISION
ENERGY GROUP NEUTRON DOSE NEUTRON DOSE

(MeV) (rad/N.cm2) (rad/N.cm2)
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

14.9

12.2

10.0

8.187

6.703

5.488

4.493

3.679

3.012

2.466

2.019

1.653

1.353

1.108

9.072(-1)

6.081 (-1)

4.076(-1)

1.111 (-1)

1.503(-2)

3.355(-3)

5.829(-4)

1.013(-4)

2.902(-5)

1.068(-5)

3.059(-6)

1.125(-6)

4.149(-7)

to 12.2

to 10.0

to 8.187

to 6.703

to 5.488

to 4.493

to 3.679

to 3.012

to 2.466

to 2.019

to 1.653

to 1.353

to 1.108

to 9.072(-1)*

to 6.081(-1)

to 4.076(-1)

to 1.111(-1)

to 1.503(-2)

to 3.355(-3)

to 5.829(-4)

to 1.012(-4)

to 2.902(-5)

to 1.068(-5)

to 3.059(-6)

to 1.125(-6)

to 4.140(-7)

to Thermal

5.46(-9)

5.13(-9)

4..84(-9)

4..62(-9)

4.53(-9)

4.70(-9)

4.11 (-9)

4.00(-9)

3.30(-9)

3.14(-9)

3.00(-9)

2.69(-9)

2.5.1(-9)

2.42(-9)

1.91 (-9)

1.61(-9)

1.03(-9)

4.44(-10)

6.94(-11)

1.38(-12)

7.0(-9)

7.0(-9)

7.08(-9)

6.88(-9)

6.23(-9)

5.73(-9)

5.15(-9)

4.76(-9)

4.49(-9)

4.20(-9)

4.13(-9)

4.00(-9)

3.89(-9)

3.77(-9)

3.32(-9)

2.46(-9)

1.70(-9)

8.93(-10)

5.44(-10)

6.07(-10)

6.72(-10)

5.33(-10)

3.80(-10)

3.42(-10)

3.27(-10)

3.23(-10)

3.20(-10.)

*Read as 1.108 to 9.027 x 10-1
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Column 1 lists the mean free paths from 5 to 100. Column 2

gives the corresponding distance in centimeters. Columns 3 to 8 pro-

vide the neutron flux (n/cm2 -sec) for 0. 125, 0. 25, 0. 5, and 1.0 mean

free path mesh spacing for both S8 and S1 6 order of angular quadrature

values at various depths in the hydrogen slab. The neutron flux quan-

tities for mesh spacing of 0. 25 and 0. 5 mean free path illustrate how

these results converge to the smaller mesh value of 0. 125 mean free

path. For the larger mesh value of 1.0 mean free path, the neutron

flux in Column 8 diverges from the flux in the smaller mesh. The

uncollided neutron flux for a plane monodirectional source is listed

in Column 9. For the mesh spacing of 0.5 mean free path and using an

S8 order of angular quadrature set, Columns 10 and 11 present the

single-collision neutron dose and multiple-collision neutron dose

(rad/sec), respectively. The results from Table 6-2 can be manipu-

lated to determine the flux or dose buildup factors as a function of

depth in centimeters or mean free paths. The resultant fluxes from

these ANISN calculations required a maximum of 5 minutes of computer

time (CPU) on the MSFC UNIVAC 1108. When this maximum time is

compared to what would have been required by a Monte Carlo program

(on the order of 30 to 60 minutes), it becomes apparent that the one-

dimensional discrete ordinate solution is significantly faster than the

Monte Carlo solution for this type of problem. It was shown that the

results obtained when using the S16 angular quadrature data are slightly

higher than those when S8 was used. This conclusion is based on the

fact that the cosine of the source neutron using S16 angular quadrature

data approaches closer to the normal than the cosine in the Ss angular

quadrature data.
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6.3 RECOMMENDATIONS AND CONCLUSIONS

The model development and approximations used in the solution

of the slab of hydrogen were the best available within the limits of time

and funding of the contract. A higher-order angular quadrature

set, S3 2 or S64 , could be employed to better simulate the source which

is normally incident to the surface of a slab. To better simulate a mono-

energetic source, the energy group structure for the cross section data

should be regrouped into a finer mesh, such as 8.2 to 8.0 MeV, which

bounds the source energy of 8. 1-MeV neutrons instead of the broad

group 8.18 to 6.70 MeV, as used in this calculation. The MSFC UNIVAC

1108 computer storage presented some limitations to the hydrogen slab

problem. Data for 100 mean free paths using 0.5 mean free path mesh

intervals could be stored on the computer. However, the original

problem was to include an equivalent distance of 200 mean free paths

in hydrogen. A scheme that would allow for more than a total of 100

mean free paths has been devised in ANISN. A brief representation of

of the techniques used is shown in Figure 6-3.

0 MFP 25 MFP

VACUUM | | | | | | VACUUM PART I

15 MFP 45 MFP

VACUUM i I l VACUUM PART II

35 MFP 65 MFP

VACUUM I I I I I I PART III

VACUUM

FIGURE 6-3. SCHEME FOR DEEP PENETRATION USING ANISN
WITH OVERLAPPING MESH INTERVALS
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ANISN would be set up in the normal procedure using vacuum

interfaces for PART I with small mesh spacing out to 25 mean free

paths. A similar mesh spacing would be used for the hydrogen slab

section in PART II which overlaps the mesh spacing described by

PART I. The neutron flux determined in PART I at mesh spacing

near the right boundary (4 to 6 mean free paths) would be used as the

source data for PART II. The overlapping mesh interval that occurs in

PART I and PART II is necessary to overcome the boundary and effect

in the ANISN neutron flux results. Similarly, a continuation of this

procedure up to 200 mean free paths in ANISN for significant distances

is conceivable using one ANISN source deck or program file on tape

and sequential data decks for each overlapping section. The availability

of time and funding during this contract study did not permit the imple-

mentation of this technique. The discrete ordinate methods used in

this study considered only the material of hydrogen in water. Other

materials could be considered for deep penetration problems.

6-8



REFERENCES - SECTION 6

6-1. Kalos, M. H., "Importance Sampling in Monte Carlo Shielding
Calculations", Nuclear Science and Engineering 16, pp. 227-
234, 1963

6-2. Soltesz, R. G. and R. K. Disney, "One-Dimensional Discrete
Ordinates Transport Technique", Volume 4, Report No. WANL-
PR(LL)-034, June 1970

6-3. Private communications with Juanita Wright, Radiation Shielding
Information Center, Oak Ridge, Tennessee, June 1971

6-9


